Open-Source Software’s Responsibility to Science

Joel Nothman

20th July 2018
Me in open source

- Mostly contributed to popular Scientific Python libraries: scikit-learn, nltk, scipy.sparse, pandas, ipython, numpydoc
- Also information extraction evaluation (neleval), etc.

- Community service
- “Volunteer software development”
- With thanks to our financial sponsors

- Caretakers aren’t always founders
- Founders aren’t always caretakers
Overheard at ICML

Don’t worry about how tricky it is to implement . . .

Someone will put it in Scikit-learn and you can just use it.
Thoughts on an arrogant ML researcher

- Scientists think software maintenance is no big deal
Thoughts on an arrogant ML researcher

- Scientists think software maintenance is no big deal
- Science and engineering rely heavily on open-source infrastructure
- Popular tools become de-facto standards
- Most users are uncomfortable building their own tools
- Many will only use what’s provided in a popular library
- Many will not inspect how it works on the inside
- Volunteer maintainers act as gatekeepers
The power of the gatekeeper

- decides which algorithms are available
- decides how to ensure correctness and stability
- decides how to name or describe the algorithm
- decides whether to be faithful to a published description
- decides on an API that may facilitate good science/engineering
The power of the gatekeeper

- decides which algorithms are available
- decides how to ensure correctness and stability
- decides how to name or describe the algorithm
- decides whether to be faithful to a published description
- decides on an API that may facilitate good science/engineering

OSS maintainers can enable or inhibit scientific best practices
But you can’t blame the gatekeeper

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
This presentation is a series of examples

- Risks to good science and engineering related to software design
- Some things we do to help science
- Some things we have changed to help science
- Some things we have yet to solve
- There’s not a great deal of NLP in here but there’s a lot of ML and software engineering in NLP (so I hope it is relevant, interesting and accessible)
Scikit-learn preliminaries

- An ecosystem of estimators
- Fit an estimator on some data, so that it can:
 - describe the training data
 - transform unseen data
 - predict a target for unseen data
- Data is usually a numeric matrix X (samples \times features)
- May provide a target vector or matrix y at training time
 - real valued for regression
 - categories for multiclass classification
 - multiple columns of binary targets for multilabel classification
Methods and results and are indecipherable if researchers publish an inappropriate, or underspecified, algorithm name.
A simple example of a bad name

- `sklearn.covariance.GraphLasso` for sparse inverse covariance estimation
- but *Graph Lasso* is sparse *regression* where the features lie on a graph
- the paper for covariance estimation named it *Graphical Lasso*
A simple example of a bad name

- `sklearn.covariance.GraphLasso` for sparse inverse covariance estimation
- but `Graph Lasso` is sparse *regression* where the features lie on a graph
- the paper for covariance estimation named it *Graphical Lasso*

Solution deprecate `GraphLasso` and rename it `GraphicalLasso`
Tripping over hidden parameters

- For multi-class or multi-label, how should you average across classes?
 - $P_a = \frac{1}{1}, P_b = \frac{1}{2}, P_c = \frac{1}{2}$
 - `average='micro' \Rightarrow \frac{3}{5}`
 - `average='macro' \Rightarrow (1 + \frac{1}{2} + \frac{1}{2})/3 = \frac{2}{3}`
 - `average='weighted' \Rightarrow (2 \times 1 + 2 \times \frac{1}{2} + 1 \times \frac{1}{2})/5 = \frac{7}{10}`

- for a long time, prevalence-weighted macro average was the default
 \therefore papers say “We achieved a precision of …”
Tripping over hidden parameters

- For multi-class or multi-label, how should you average across classes?
 - `P_a = \frac{1}{1`, `P_b = \frac{1}{2`, `P_c = \frac{1}{2`}
 - average=’micro’ ⇒ \frac{3}{5}
 - average=’macro’ ⇒ (1 + \frac{1}{2} + \frac{1}{2})/3 = \frac{2}{3}
 - average=’weighted’ ⇒ (2 \times 1 + 2 \times \frac{1}{2} + 1 \times \frac{1}{2})/5 = \frac{7}{10}
- for a long time, prevalence-weighted macro average was the default
 \therefore: papers say “We achieved a precision of . . . ”

Solution

`precision_score` raises an error if the data is not binary, unless the user specifies average.

Use the API to force literacy & awareness
What’s in a name?

▶ What makes an implementation of some named algorithm correct?

▶ Faithful to a published research paper?
▶ Faithful to a reference implementation?
▶ Faithful to some community of practice?
▶ Consistent with other components of our software library?
▶ Consistent with previous versions of the library?
Experimenters report sub-optimal results because they assume our implementation is nicely behaved.
The fit you thought was finished

- Many optimisations are iterative
- have criteria to test if it has converged on an optimum
- Predictions and inferences may be poor if parameters did not converge
The fit you thought was finished

- Many optimisations are iterative
- have criteria to test if it has converged on an optimum
- Predictions and inferences may be poor if parameters did not converge

Solution: Warn if we did not detect convergence
but if we have too many warnings, users ignore them...
The words you didn’t mean to stop

- CountVectorizer turns text into a term-document matrix
- can choose stop words: None, ‘english’ or BYO
- ‘english’ will remove system (and used to remove computer)
- ‘english’ will remove five, six, eight but not seven
- ‘english’ will remove we have but treat we’ve as ve
- This is documented nowhere.
- See my NLP-OSS paper with Hanmin Qin and Roman Yurchak
The words you didn’t mean to stop

- CountVectorizer turns text into a term-document matrix
- can choose stop words: None, ‘english’ or BYO
- ‘english’ will remove *system* (and used to remove *computer*)
- ‘english’ will remove *five, six, eight* but not *seven*
- ‘english’ will remove *we have* but treat *we’ve* as *ve*
- This is documented nowhere.
- See my NLP-OSS paper with Hanmin Qin and Roman Yurchak

Solution Deprecate ‘english’
The words you didn’t mean to stop

- `CountVectorizer` turns text into a term-document matrix
- can choose stop words: None, ‘english’ or BYO
- ‘english’ will remove *system* (and used to remove *computer*)
- ‘english’ will remove *five, six, eight* but not *seven*
- ‘english’ will remove *we have* but treat *we’ve* as *ve*
- This is documented nowhere.
- See my NLP-OSS paper with Hanmin Qin and Roman Yurchak

Solution Deprecate ‘english’ and add another *perfect* stop list . . .
The intercept you didn’t mean to regularise

- In Logistic Regression, we learn a weight vector β
- and a bias term β_0 which corresponds to a feature x_0 of all-1s
- Regularisation: minimise $\sqrt{\sum_i \beta_i^2}$ to ensure small weights as well as small loss
- liblinear regularises β_0. You probably never want to do this.
- All our other linear estimators do not regularise the intercept.
The intercept you didn’t mean to regularise

- In Logistic Regression, we learn a weight vector β
- and a bias term β_0 which corresponds to a feature x_0 of all-1s
- Regularisation: minimise $\sqrt{\sum_i \beta_i^2}$ to ensure small weights as well as small loss
- liblinear regularises β_0. You probably never want to do this.
- All our other linear estimators do not regularise the intercept.

Sol’n 1 intercept_scaling: also need to optimise x_0’s fill value
The intercept you didn’t mean to regularise

- In Logistic Regression, we learn a weight vector β
- and a bias term β_0 which corresponds to a feature x_0 of all-1s
- Regularisation: minimise $\sqrt{\sum_i \beta_i^2}$ to ensure small weights as well as small loss
- liblinear regularises β_0. You probably never want to do this.
- All our other linear estimators do not regularise the intercept.

Sol’n 1 `intercept_scaling`: also need to optimise x_0’s fill value
... but most users don’t see/do this

Sol’n 2 Implement alternative optimisers, and deprecate liblinear as default LogisticRegression solver
Analysis of code on GitHub shows that people use default parameters when they shouldn’t

Andreas Müller
Most users are lazy

- Users don’t explore alternatives
 - alternative parameters values
 - alternative software libraries

- My students tend to use a CountVectorizer even when they’re counting non-words (e.g. synsets)

- We try to provide sensible default parameters
Sensible default fail

- Ten-tree forests
- Three-fold cross validation
- ?? A tokeniser that splits on word-internal punctuation
What makes a default value good?

- Good defaults should give good predictive models and reliable statistics
- ? Good defaults should behave how users expect
 - but different communities of practice
- Good defaults should be invariant to:
 - sample size (for stability in cross validation)
 - number of features (for stability in model selection)
 - ?feature scaling (for stability in different tasks/datasets)
- Example: finding a good default γ for an RBF kernel (#779, #10331)
Good parametrisation

- We choose the defaults, but also how parameters are expressed
- (and whether they can be changed at all)

- Should number of nearest neighbors be specified as:
 - an absolute value (e.g. 10)?
 - a proportion of training samples (e.g. 2%)?
 - an arbitrary function of training data shape?

- Algorithms and optimisation research often don’t report on this
Scientific software should make it easy for users to do good science.
Have you ever tried to de-tokenise the Penn TreeBank?

- PTB is delivered with each token POS tagged or bracketed
- We wanted to know how paragraph structure, etc. informed parsing
- The source text before tokenisation is available
- An easy case:

```
[ Imports/NNS ]
were/VBD at/IN
[ $/$ 50.38/CD billion/CD ]
/, up/RB
[ 19/CD %/NN ]
./.
```

Imports were at $50.38 billion, up 19%.
Have you ever tried to de-tokenise the Penn TreeBank?

- PTB is delivered with each token POS tagged or bracketed
- We wanted to know how paragraph structure, etc. informed parsing
- The source text before tokenisation is available
 ⇒ alignment hell due to typos corrected/inserted, reorderings, missed text, etc.

- Hindsight: delivering annotations on tokenised text is a bad idea
- It restricts what you can do with it later
- NLP software should always provide stand-off markup
- Or store the whitespace/non-token data as spaCy does
Avoiding leakage in cross validation

Bad

\[
X_{\text{preprocessed}} = \text{preprocessor}.\text{fit_transform}(X) \\
\text{result} = \text{cross_validate}(\text{classifier}, X_{\text{preprocessed}}, y)
\]

Test data statistics leak into preprocessing
⇒ inflated cross validation results

Good

\[
\text{pipeline} = \text{make_pipeline}(\text{preprocessor}, \text{classifier}) \\
\text{result} = \text{cross_validate}(\text{pipeline}, X, y)
\]
Avoiding leakage in cross validation

Bad

```python
X_preprocessed = preprocessor.fit_transform(X)
result = cross_validate(classifier, X_preprocessed, y)
```

Test data statistics leak into preprocessing
⇒ inflated cross validation results

Good

```python
pipeline = make_pipeline(preprocessor, classifier)
result = cross_validate(pipeline, X, y)
```

Solution
De-emphasise `fit_transform`.
And make sure `Pipeline` works with everything;
and make sure `cross_validate` works with everything.
Maintainers of large projects can’t be experts in all the things they maintain.
Scientists can (and do) help us:

- make sure the implementation matches the name
- make users aware of or avoid unexpected behaviour
- parametrise algorithms and set defaults helpfully
- understand how our design choices lead to flawed experiments

Users trust popular OSS.
Thank you for helping us make OSS trustworthy.