Open-Source Software's Responsibility to Science

Joel Nothman

20th July 2018

Me in open source

- Mostly contributed to popular Scientific Python libraries: scikit-learn, nltk, scipy.sparse, pandas, ipython, numpydoc
- ▶ Also information extraction evaluation (neleval), etc.
- Community service
- "Volunteer software development"
- ▶ With thanks to our financial sponsors
- Caretakers aren't always founders
- Founders aren't always caretakers

Gatekeepers			3
000000			

Overheard at ICML

Don't worry about how tricky it is to implement

Someone will put it in Scikit-learn and you can just use it.

Gatekeepers			
000000			

Thoughts on an arrogant ML researcher

Scientists think software maintenance is no big deal

Thoughts on an arrogant ML researcher

- Scientists think software maintenance is no big deal
- Science and engineering rely heavily on open-source infrastructure
- Popular tools become de-facto standards
- Most users are uncomfortable building their own tools
- Many will only use what's provided in a popular library
- Many will not inspect how it works on the inside
- Volunteer maintainers act as gatekeepers

The power of the gatekeeper

- decides which algorithms are available
- decides how to ensure correctness and stability
- decides how to name or describe the algorithm
- decides whether to be faithful to a published description
- decides on an API that may facilitate good science/engineering

The power of the gatekeeper

- decides which algorithms are available
- decides how to ensure correctness and stability
- decides how to name or describe the algorithm
- decides whether to be faithful to a published description
- decides on an API that may facilitate good science/engineering

OSS maintainers can enable or inhibit scientific best practices

Gatekeepers			
0000000			

But you can't blame the gatekeeper

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS **"AS IS"** AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

This presentation is a series of examples

- Risks to good science and engineering related to software design
- Some things we do to help science
- Some things we have changed to help science
- Some things we have yet to solve
- There's not a great deal of NLP in here but there's a lot of ML and software engineering in NLP (so I hope it is relevant, interesting and accessible)

Scikit-learn preliminaries

THE UNIVERSITY OF

- An ecosystem of estimators
- Fit an estimator on some data, so that it can:
 - describe the training data
 - transform unseen data
 - predict a target for unseen data
- ▶ Data is usually a numeric matrix X (samples × features)
- May provide a target vector or matrix y at training time
 - real valued for regression
 - categories for multiclass classification
 - multiple columns of binary targets for multilabel classification

	Names			9
	0000			

Methods and results and are indecipherable if researchers publish an inappropriate, or underspecified, algorithm name

A simple example of a bad name

- sklearn.covariance.GraphLasso for sparse inverse covariance estimation
- ▶ but *Graph Lasso* is sparse *regression* where the features lie on a graph
- ▶ the paper for covariance estimation named it *Graphical Lasso*

A simple example of a bad name

- sklearn.covariance.GraphLasso for sparse inverse covariance estimation
- ▶ but *Graph Lasso* is sparse *regression* where the features lie on a graph
- ▶ the paper for covariance estimation named it *Graphical Lasso*
- Solution deprecate GraphLasso and rename it GraphicalLasso

	Names			11
	0000			

Tripping over hidden parameters

- precision_score(['a', 'a', 'b', 'b', 'c'], ['a', 'b', 'b', 'c', 'c'])
- ▶ For multi-class or multi-label, how should you average across classes?

•
$$P_a = \frac{1}{1}, P_b = \frac{1}{2}, P_c = \frac{1}{2}$$

• average='micro' $\Rightarrow \frac{3}{5}$

• average='macro'
$$\Rightarrow (1 + \frac{1}{2} + \frac{1}{2})/3 = \frac{2}{3}$$

- ▶ average='weighted' $\Rightarrow (2 \times 1 + 2 \times \frac{1}{2} + 1 \times \frac{1}{2})/5 = \frac{7}{10}$
- ▶ for a long time, prevalence-weighted macro average was the default
 - ... papers say "We achieved a precision of"

	Names			11
	0000			

Tripping over hidden parameters

- precision_score(['a', 'a', 'b', 'b', 'c'], ['a', 'b', 'c', 'c'])
- ▶ For multi-class or multi-label, how should you average across classes?

•
$$P_a = \frac{1}{1}, P_b = \frac{1}{2}, P_c = \frac{1}{2}$$

▶ average='micro' $\Rightarrow \frac{3}{5}$

• average='macro'
$$\Rightarrow (1 + \frac{1}{2} + \frac{1}{2})/3 = \frac{2}{3}$$

- ▶ average='weighted' $\Rightarrow (2 \times 1 + 2 \times \frac{1}{2} + 1 \times \frac{1}{2})/5 = \frac{7}{10}$
- ▶ for a long time, prevalence-weighted macro average was the default

... papers say "We achieved a precision of"

Solution precision_score raises an error if the data is not binary, unless the user specifies average.

Use the API to force literacy & awareness

What's in a name?

What makes an implementation of some named algorithm correct?

- Faithful to a published research paper?
- ▶ Faithful to a reference implementation?
- Faithful to some community of practice?
- Consistent with other components of our software library?
- Consistent with previous versions of the library?

	Surprises		13
	0000		

Experimenters report sub-optimal results because they assume our implementation is nicely behaved

The fit you thought was finished

- Many optimisations are iterative
- have criteria to test if it has converged on an optimum
- > Predictions and inferences may be poor if parameters did not converge

The fit you thought was finished

- Many optimisations are iterative
- have criteria to test if it has converged on an optimum
- Predictions and inferences may be poor if parameters did not converge
- Solution Warn if we did not detect convergence but if we have too many warnings, users ignore them...

The words you didn't mean to stop

- CountVectorizer turns text into a term-document matrix
- can choose stop words: None, 'english' or BYO
- 'english' will remove system (and used to remove computer)
- 'english' will remove five, six, eight but not seven
- 'english' will remove we have but treat we've as ve
- ► This is documented nowhere.
- See my NLP-OSS paper with Hanmin Qin and Roman Yurchak

The words you didn't mean to stop

- CountVectorizer turns text into a term-document matrix
- can choose stop words: None, 'english' or BYO
- 'english' will remove system (and used to remove computer)
- 'english' will remove five, six, eight but not seven
- 'english' will remove we have but treat we've as ve
- ► This is documented nowhere.
- See my NLP-OSS paper with Hanmin Qin and Roman Yurchak

Solution Deprecate 'english'

The words you didn't mean to stop

- CountVectorizer turns text into a term-document matrix
- can choose stop words: None, 'english' or BYO
- 'english' will remove system (and used to remove computer)
- 'english' will remove five, six, eight but not seven
- 'english' will remove we have but treat we've as ve
- ► This is documented nowhere.
- See my NLP-OSS paper with Hanmin Qin and Roman Yurchak

Solution Deprecate 'english' and add another perfect stop list

The intercept you didn't mean to regularise

- \blacktriangleright In Logistic Regression, we learn a weight vector β
- \blacktriangleright and a bias term β_0 which corresponds to a feature \mathbf{x}_0 of all-1s
- ▶ Regularisation: minimise $\sqrt{\sum_i \beta_i^2}$ to ensure small weights as well as small loss
- liblinear regularises β_0 . You probably never want to do this.
- ► All our other linear estimators do not regularise the intercept.

The intercept you didn't mean to regularise

- \blacktriangleright In Logistic Regression, we learn a weight vector β
- \blacktriangleright and a bias term β_0 which corresponds to a feature \mathbf{x}_0 of all-1s
- ▶ Regularisation: minimise $\sqrt{\sum_i \beta_i^2}$ to ensure small weights as well as small loss
- liblinear regularises β_0 . You probably never want to do this.
- All our other linear estimators do not regularise the intercept.
- Sol'n 1 intercept_scaling: also need to optimise \mathbf{x}_0 's fill value

The intercept you didn't mean to regularise

- \blacktriangleright In Logistic Regression, we learn a weight vector β
- \blacktriangleright and a bias term β_0 which corresponds to a feature \mathbf{x}_0 of all-1s
- ▶ Regularisation: minimise $\sqrt{\sum_i \beta_i^2}$ to ensure small weights as well as small loss
- liblinear regularises β_0 . You probably never want to do this.
- All our other linear estimators do not regularise the intercept.
- Sol'n 1 intercept_scaling: also need to optimise \mathbf{x}_0 's fill value ... but most users don't see/do this
- Sol'n 2 Implement alternative optimisers, and deprecate liblinear as default LogisticRegression solver

		Sensibility		17
		00000		

Analysis of code on GitHub shows that people use default parameters when they shouldn't

Andreas Müller

Most users are lazy

- Users don't explore alternatives
 - alternative parameters values
 - alternative software libraries
- My students tend to use a CountVectorizer even when they're counting non-words (e.g. synsets)
- ► We try to provide sensible default parameters

Sensible default fail

- Ten-tree forests
- Three-fold cross validation
- > ?? A tokeniser that splits on word-internal punctuation

What makes a default value good?

- Good defaults should give good predictive models and reliable statistics
- Good defaults should behave how users expect
 - but different communities of practice
- Good defaults should be invariant to:
 - sample size (for stability in cross validation)
 - number of features (for stability in model selection)
 - ?feature scaling (for stability in different tasks/datasets)
- Example: finding a good default γ for an RBF kernel (#779, #10331)

Good parametrisation

- ▶ We choose the defaults, but also how parameters are expressed
- (and whether they can be changed at all)
- Should number of nearest neighbors be specified as:
 - ▶ an absolute value (e.g. 10)?
 - ► a proportion of training samples (e.g. 2%)?
 - an arbitrary function of training data shape?

> Algorithms and optimisation research often don't report on this

		Misdirection	22
		0000	

Scientific software should make it easy for users to do good science.

Have you ever tried to de-tokenise the Penn TreeBank?

- PTB is delivered with each token POS tagged or bracketed
- ▶ We wanted to know how paragraph structure, etc. informed parsing
- The source text before tokenisation is available
- An easy case:

[Imports/NNS]
were/VBD at/IN
[\$/\$ 50.38/CD billion/CD]
,/, up/RB
[19/CD %/NN]
./.

Imports were at \$50.38 billion, up 19%.

Imports	1 - 7
were	9–12
at	14–15
\$	16–16
50.38	17–21

Have you ever tried to de-tokenise the Penn TreeBank?

- ▶ PTB is delivered with each token POS tagged or bracketed
- ▶ We wanted to know how paragraph structure, etc. informed parsing
- The source text before tokenisation is available
- \Rightarrow alignment hell due to typos corrected/inserted, reorderings, missed text, etc.
- ▶ Hindsight: delivering annotations on tokenised text is a bad idea
- It restricts what you can do with it later
- NLP software should always provide stand-off markup
- Or store the whitespace/non-token data as spaCy does

Gatekeepers		Misdirection	
0000000		0000	

Avoiding leakage in cross validation

Bad X_preprocessed = preprocessor.fit_transform(X)
result = cross_validate(classifier, X_preprocessed, y)

Test data statistics leak into preprocessing \Rightarrow inflated cross validation results

Good pipeline = make_pipeline(preprocessor, classifier)
 result = cross_validate(pipeline, X, y)

Gatekeepers		Misdirection	
0000000		0000	

Avoiding leakage in cross validation

Bad X_preprocessed = preprocessor.fit_transform(X)
result = cross_validate(classifier, X_preprocessed, y)

Test data statistics leak into preprocessing \Rightarrow inflated cross validation results

Good pipeline = make_pipeline(preprocessor, classifier)
 result = cross_validate(pipeline, X, y)

Solution De-emphasise fit_transform. And make sure Pipeline works with everything; and make sure cross_validate works with everything.

Maintainers of large projects can't be experts in *all* the things they maintain

Scientists can (and do) help us:

- make sure the implementation matches the name
- make users aware of or avoid unexpected behaviour
- parametrise algorithms and set defaults helpfully
- understand how our design choices lead to flawed experiments

Users trust popular OSS. Thank you for helping us make OSS trustworthy.